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AGGREGATION OF VARIABLES I DWAIDCAL_LYSTIS

Apologla

Dittoed maruscripts are by definition preliminary. This one
is especially 80, and I am under ro 1llusions as to the rigorousness
of the proofs in Seoctions 4 and 5, On the other hand, the topic
dealt with hore has to do fundamentally tith approximations, and I
have a notion that in'this instance heuristic is of more importance
than rigor, lMoreaver, if anyone wishes to male matters more rigorous
the proofs provided here do, I believe, mark a clear route; and patience
and a liberel sprinkling of epsilons will £111 in the detalls,

W: I have had mmerous very enlightening discussions
Newell on the subject of this paper.

1. Imtroduction

The noed to deal with many problems of economic theory in tems
of aggrogatas is obwious, The complets talrasinn system, ani the more
modern dymanic embellishments of it are relatively barren of results for
maoroeconoumdcs and economic policy., Hemce, by sheer necessity, we use
highly aggregated systems, often without having much more than tho same
nocessity as a justification for their use, Perhaps the most important
result to date in the attempt to justify sggregation under certain
clroumstances is the Lange~Hicks condition, about which we shall say
more later,

The developmont of the Leontief input-outpat model, and the
concern with actual mmerical coofficients in rathér highly disaggre-
gated versions of this model have renewed interest in aggregation,
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There was at first, perhaps, the fond hope that modern computing
equipment touild handle matrices of any cise we might be likely to
ooncern ourselves with, and hence would obviate th» need for agrrega~
tion, By mow, it is clear that the sisze o7 the mpdels we should like
to bandle has outstripped the develorment of computere--and is lilely
to continue to do 80 as long as tho time required to invert a matrix
increases ith the cube of the mmber of rows anC columns, A mmber
of exporinents have already boen made (e.g., 'Mitin and lbrgenstern) to
determine thether aggregation can bs used to obttain approximate inverses
more econorically.

lost discussions of aggregation have talen place in the context
of an algetraic model, The problem mey be stated in generel terms as
follows: Ue tave to sets (not necsesarily distinot) of variables—(x,|
mg&-‘ma system of equations giving the y's as functions of the
x's. Ve uvish to kmotr under that circumstances there exists a funciion,
!(::’_J...ﬁ), of the x's and another mncti.on, !(yugojrn); of the yis,
such that & relation, Y =§(X), betueen Y ond X can be deduced from the
given system of oq\mﬁions relating the x's and y's, Sometimes additiomal
conditions ar% imposed—e.g,, the functions ¥ and X are givem, or it is
* required that the relation § possess certain properties, (For a compre-
hensive treatmont, see Thedl).

The conditicns that must be satisfied in order for apgregation to
be strictly poossible are very severs, lhether these conditions are
smotly satiofied in any practical situwaetion 1s, of oouren, mot an
important question, U would be perfectly satisfied 1ith aggregative
models that gave us only approximate results--ive have no illusions,
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after all, that any modui we mignt supioy is mors than an approximate
deueription of reality, Our objective in exploring the aggregation
prublem should be to soek rules and criterla-—exnet or heuristio--that
uill give us clues as to what variables to aggregate, and vill indicate

to us under vhat efrcumstances agprsgotion is likely to yleld vatisfactory
aprroximations,

The lange-Hicks condition is a criterion of this kind, It states
tict 1f two or moro variables always move together; then they may be
rggrogated imto a single variable, which will be an appropriately weighed
averuge of the originsl variables. This is a useful criterion, since it
tell.s vws that we may aggresate classes of comodities that are perfect
substitutes——or that are approximately 90,

At another lovel, the Lange-ilicks condition is unsatisfactory,
for it vequires that we know as a datum which variables move together,

In actual fact, it may be part of our problem to discover this, Ve may
be confronted wvith o dynardcal system involving a large mmber of varia~
bles, and may have to infer from the equations of the system vhich varia~
bles will move ‘ogether—or will bshave nearly emough in this mammer to
warrant aggregation. Th:l.sisthg essential problem we shall set oure
sclves here: Yo deternins conditions that, if estisfied by the equatiom

1111 pevwit approccimate agrrezation of
Yariables. Note that we will be interested in sufficient, rether than

QYnanlcs SYELen,

necessary, oconditions, Hence, we may also view our task as that of

discovering one or more classco of dynamlcal systems that porwit aggrega=
tion of their variables,
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2, DIroperties of "Nearly-Decomposatle" llatrices

For purposes of expnsition, it 1141l be conveniont to limit our=
solves, for the most part, to stochastic matrices~that is, mmn matrices
all of whose elements are nonsnegative and with the oum of the elements

in each row equal to 1: P42 0 (4,3 = 1,...5m), and 53 w1 (J*1,e0e5n)0

Py
The rosults may readily be generalized {(Fobert Solovw, "0;’: the Structure of
Jdrear [odels," Leononstrica, Jamwary, 1952, pp. 42-43), but the restriction
will perhaps make the intuitive basis of the amalysis clearer than iould a
more general treatment. 1Ath this interpretation, the index i runs over
the 3 possible states of the system, pi(t) represents the probability
that the systen is in the i'P state at time t, amd Py y Tepresents the
coniitioml probatdlity that the system, if in state 1 at time ¢, will be
in state j at time (t+l).

lowr suppose that by an approximate permmtation of rows and corres—
pondin~ colums the stochastie mt.ﬂx Pt -'l r»'14 I can bs arranged at fol-

lows:

(2.1) Pt o

vhare the P_:t are square sutmatricoes and the remaining elememts, mot

displayed, are all zcro, Then the matrix is completely decomposable,
Suppose further that nono of the subtmatrices, Pi, are themselves

decomposable,
Let the system, at time t,, be in the state I;, where I; is ome
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of tho states belonging to the submatrix P;. Then it is obwious

that at all subscquent tincs the system 1ill continue to be in ane of

the states belonging to P:'(--dbhe.t the probability of transition to any

state outside thls subsot is zero, Further, if the initial position of

the systen is given by a probability distribution over the states belonging
to P:'[,
bution of the system, after the passage of an indefinite period of time,

all other states having sero probability, then the limiting distris.

11l be independent of this initiz) distribution. If, on the other hand,
the initial distribution assigns non-zero probabilities to states belonging
to more than one of the indecomposable submatrices, P:'r, then the limiting
distribution will not be indepemxient of the initial distribution,

Let the initial distribution be pi(o) » ani. definest

(2.2) POz p (0 Pejr = /ey
‘then the final distribution will be:
(2.3) Py = pp(0)oBy/y
where the ;UI (but not the '51) aro independent of the initial distribution,
The '51/1 are the characteristic vectors of the sutmatrix P} corresponding
to the largest characteristic root, M™ 1. Further, the distribution of
(2.3) is an oquilibrium distribution in that, if this distribution is
once attained by the system, it will not change over time.

Now, suppose the stochastic matrix to be slightly altered so that
thore is nowv at least ons path tith non~gero probability leading, in
not more than p steps, from any one state of the system to any other
state, That is to say, i® suppose certain of the zero elements in P!
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that lie outside the sutmatrices, Pi,hobouplaodbynxvmu
mmw;,mmmwomquuuma-
pondingly reduced s0 as to preserve the row~cum condition. lle will
refer to the modified matrix, P, obtained from P! in this fashion, as
& "mearly-decomposable®™ matrix, The. tere "nearly-decomposable,” like
the tera "very small non-zero elements®, is not, of cource, precise, %
will be contert to leave the criterion of smllnses undefined, The amller
these elements are, the closer to the exact solution :4l1l be the approxie
mtion to be discuseed here, but we shall not attempt to evaluate explicitly
the goodness of the approximntions,
mtuomldwmmmm;mmmmn,
nearly-decomposshle matrix, P, ve my readily reach the following coo=
elusions, which depend on the fast that the charecteristic roots of a
mtrix are contimwous functions of the matrix elemsntss
! 1, Unity will be the largest characteristic root of both P! and
P, It will be a root of multiplicity N of P* (aince each imiecomposable
nhntrl;of?'tdnhwmﬂ.tyasadmlem);bubammuh
( 2, The matrix P! w11l have (n-N) roots that are less than 1 in
| abeolute value; tho matrix P rd1l have a set of (n=ll) roots in one-ons
correspondence to these~=the difference between corresponding roots
of P' and P being a continwus fumction of the diffcrences betieen the

two ocoefficients of the metrioces, _
3. The matrix P will have (N-l) roots very close to unity., e
will suppose the difference between P! and P to be sufficiently amall
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that the difference betussu vnity aid the gmaliest of thece rcots iu
very much smaller (e.g., of the order of one percent) than the differance
between unity and the larpest of the remeining roots of P,

This isomorphism betwecn the characteristic roots of P! and the
roots of P allows us to rmake a qualitative analysis of the structure
of the latter system, The roots of P bslong to three classaos:

(1) the simple root at umity; (2) the (N-1) naxt largest roots (cor-
responding to tho remaining roots of Pi at unity); and (3) the (n=N)
smaller roots, The latter roots can, in tuz:n, be partitioned into sub=-
jets corresponiing to the sulmatrices of P!,

e see that the roots of class (3) are involved in the process
whereby equilitrium is reached in the distritution uithin each of the
indecomposatble subsets of states of the system., The reots of class (2)
are involved ir “he process of attaining equilibrium among subeets, The
largest root is associated wvith the steady-state distribution of the
entire system.

The smnller a characteristic root, the more quickly is the
transiont damped with which this root is associated. Ve have assuced
the difference betweon P' and P to bs so emall that the roots of class (3)
1411 be smaller than the roots of olass (2), Hence, equllibrium within

the equilibrium subsets. In first ap.roxiwation, we may view
tvubsets v at moye e eq procedsd as

proceeding in two successive steps:
(1) ws rcach the equllibriun represenmted by (2,3), corresponding
to the equilibrium of the eccmpletely decomposable system for the same
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initial distritation;

~ (2) meinteiming this equilibriuma within each svhoot st all
times, we attain, through a slowv changs in the pI, vhe generz2l aquilis.
briwm of the angine system,

Notice that in the second stage of this process, all the Py
within any single subset vary proportionately-——hence satisfy the Hicko-
Tange coniition for aggrsgation. That 1s, the long-range dynamic behavior
of the systen depends only on the Pyo As fmE the short~range dynamic
behavior of the system, we may regard it as composed of N independent
indecomposable parts—-corresponding to the sulmatrices PI--ud may
solve each of these subsystems independently of the othe:rs.

Let n, be the muzber of rows (and colums) in P, and henos
the mmber of states in the corresponding subset (tnx-n). Then, by
the process of decomposition just described, e have replaced a dynamical
process ropresonted by a mmm matrix uith a auporpos:ltion of dsmm.cel

mocosses represented by I matrices of sise gAxgn, caep gngl, mpoctive]g,
and one additionnl matrix of size IxlN, later, we shall show that this

3. A Physlcal Illustration
Before we proceed with a more careful statemcnt of the mathe-

matics that underldes our analysim, it may be usefnl to provide an
example of a physical systcm that can be, approximetely, decomposed

in the manner just escribed, The illustration will be useful, also,
i.ti showing that our conclusions do not depond on the stochastic proper-~
ties of the matrix we have discussed thus far. Ue sholl ses that the
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principle of agprscation wo are wrploying is essentially that wilch

JustiMes the replaceucnt of microvir.atles Ly macruvariables in

classloal thormodyhamics.

lot uws consider an imaginary buildding, hoce oubside wmalls pro-
vide perfect thermal insulation from the emvircment. The bwilding is
divided into a largs mumber of rooms, the walls betwezn them beding good,
but not perfect, insulators, Fach roon is divided irto 2 mmber of offices
by partitions. The partitions are only poor insulators. A thermomecter

hangs in each of the offices,

Let us suppose that at time t, the various offices within the
bdlding are in a state of thermal disoquilibrium-—there la a iride
variation in temperature from 6ffice to office and from room to room,

If we take ne tempereture readings at time t., acvnﬂ.honrsamrto;
what vill we find? At by, there will be very little variation in tem~
perature azong tho offices that ~1e in oach singls room, but there may
still be large temperaturs variations between rocma, If we take readings
again at tino tz, sevoral days after ty, ve may find that there 1s an
almost uniform temporature throughout the building, the temperature
differences between rooms having virtwally disappeared.

The uvell-lmoim oguations for the diffusion of hoat allow us to
represout this situation by a system of differential equations—-or
approximately by a system of difference equations,

Lot Tp..(t) bo the temperature of the I office uhich 1s in the
I*® room, at timo to Lot T(t) be the vector consisting of these tempera-

tures as components, ?(t) = {Tl,l, '1‘1,2”""1':%,)' . Tﬂ,k,..., TII,m}
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Then we A1l have:
3.1) T(e+1) = A%r(t)
where A 13 a matrix uhose ocoefiicients, oy a9 reproscnt the vretes of
heat transfor betieen office 1 and office j per degroe difference in
temporature,

Ve ish mou to represent the fact that a temperature equilibrium

uithin each room is reached rathor rapidly, 'tile a temperaturs equilibrium

ampng rooms 1s reached only slouvly, This vAll be the caso ii’_the aﬁ
are penarally lorpe then i and § are offices in the same room, and if
the au are close to zero vhon i and j are offices 1n differerti roomses
that is to say, if the matrix A is nearly decomposable.

then this is the cass, and as long as we are not interested in
the high frequency fluctuations in tempersture aong offices in the
same rOGm, wWe ocan learn all we tant to lmow atout the dynamics of this
system by placing a single thormometer in sach room--it is unnecessary

to place a thermometor in each offics,

4o Time Paths of learly Desomposable Systems

¥ uill retwrn nowr to the specinl case of stochastic systems
axd examine the dynamical process in more detail, The system is given byt

. n
.l t*l t oo
(4.1) pj( ) ';511)1( )Pu (3=1;...,n)
I wo solve this system of difforence equations to obtain the

8 a8 explicit functions of time, we zats:
t

¢

2
P

(‘502) PJ(t) -ﬁlajf (3"1, ve .,n)

5 v ik S A S B s

[ P Y T



But we knoy also thets:

< B3 pyeY = p @) (35..0,0)

Now it is possible (providod that all tho clmractwiatic,&;
are distinst) to reprecent the right-hand cize of (4.3) as a swn that
i3 equal term by tem to the right-hand eide of (4.2). (see Ueddwtnum,
PPe 25-6) To do this we proceed as follous:

For any man matrix. A _, with g distinct characteristic roots, we
- (e)

oan £ind a set of n ideapotent matrices, o .'.(f-l.....n). with the
fsllowing properties: :

1) a ¥, a¥ m a(®  (1aepotence)

(11) G(@ . G(o) = 0, for 'fa

(110)f 2 -  Jodiors I i the idectity mirix, 3 -“3“”.

b @
(iv) ‘13 "’g‘ K' Bu
Now, consider the matrin Ab. Taking the t'® power of (iv)

and using (1) and (41), we fint, for A% = Hai}’ll

) "g) o R

Udn_g this representation, we may express P(") = Pt ttme:

(k) oy = aen)

where, the m(® are matrices satisfying (1), (11) and (114) above,
substituting (A.4) in (4.3) and comparing the resulting expression with

(4o2), we get:

(0
(4e5) 80 O T

et et I . n iyt s R o - ey,
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Suppose nowr that P =“p““18 noarly decomposable, and let P!
be the corresponding decomposable matrix obtained from P by an appro-
priate limiting process., By examination of the limiting process e
can again divide the roots of P into three sets: (1) Ay 13 (2) Apcoaendyy,
(corresponding to tho remaining roots of unity in P'); (3) Ayeguosssdys

Consider onec of the indeconposable submatrices ,'Pi_, of P and
designate its roots by A =1, X"“l,a..,, };‘koln exactly the same way as
in (4.4) we i1l have:
(4.6) pit w XI) L FEK .6 i

I v NT

Raxt oonsider the pxp motrices that are formed from the above
matrices Yy bordering them with an appropriate nunbar of rows and
colums having all elenents sero. ‘e will designate these bordered
mtrices :ith tho sams symbols as are employed for the corresponding
™X 0y matrices in (4,6). It will be clear from tho context in each
instznce which oet of matrices is intended,

tlow, we nay writes

(‘to?) Pt = P‘i 0oc‘.m‘Pi

and similarly for the ot power of P?:

Sa0etPY -:g\“'m ’ei‘)‘i )

- I t @
) pre -, el )o'?m;.; s
Bow, for P", we will have the corresponding representation:
v, (1), ¥ ¢ o) t (e
(L.9) PP w iy +&1 A’ " ocgm' l’n

We observe that the last swamation in (4.9) will be as nearly
oqual as we please, term by term, to the corresponding summation in

EEESRINYE N

e s A L



O IIIROT =" Ry e o e

Pﬂg' 130

(408), — provided only that we take P sufficiently close to P',
We will have also the approximste egquality:
R ~r N N “Q
t(L) - (1,"
(4.10) IEA" () ~'n 0052 ™

But in {4,10) the correspondence camnot bs torm-by-term, for
sach colum of n(l) has as elements the ;f‘, while each volumn of n’fu)
has as elemerts the pi/I. If i and 1° both belong to the subset I,
then for moderate or large 4, we bnvw
(h.12) SR "i;)@ ¥Py

If 4 belongs %o I and J to J, J 5* I, then we will have,
approximately

(ho12)
31 t-20-1) - ()
"(13)? §° 1‘81 Jrk-!"u' 1’1':" 73!3 .

and uaing (5.11)
(t)w
(4o13) p“) L Er oy Paoss Puigs Py
-~ (t)
Py/e P
here Py " b1 ks Pyt Puige,
Equation (4.12) assumes the Pysge to be wery small when 4® und
J? belong to different subsots. In that case, a transition from state

1 to state J in t periods may be assumed t0 iuvolve a single transition
fyom ons subset to another — paths involving several such transitions

&/ By " moderatse or largs ti'we mean t sufficiently large that A =0
for = moooo.nﬂ V 0 for '.lpooop“o

© el c s
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having a vanishingly amall probability. Hence, on the right-—hand

olde of ( 4.12), we have rotained only the terms involving Py

raised to the first power., Simllarly, for reasonebly large t, the
terms in vhichais very smll or very close to (t-l) will be nsgligibie
compared with the sum of terns in uvhicha is of the order of /2. But
for all the latter terms, (4.11) will hold, thus justifying the step
leading to (4.13),

m&.n)mnotmtpg)momquj,l,anﬂhmu
indopendent of 1. Dut for moderate or large t we also have, from (k.10)

(I - 1l -p ' —— D
(5.14) I!A"i.g ) gJ) pj/J ‘IJ pa

- ~R)> )
FJ/J “n ™) cf-z“u

and from (4.13) and (4.9)
- - ()
(h5) offp = = By o -y = oy M
But for (A.1k) and (A.15) to hold identically in t; we must
have:

(‘lol6) "‘? - “1?) [;yJ 614 -;J] ‘ ) Q.Z.ooo .‘)

e have nov reached the importamt result that for cach of the
firet I idompotent metrices,m <® , elavents vithin & siven bloe (e.g.
the bloc of rows 1gY and colume V£J) unnqommh;w, and 411
othorioss be functions only of I and J. This permits us, for purposes
of invereion, to replace these matrices vith agrregative matricgs having

s cont o450 s R AR -

PR
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a single rov and columy Jor each subset I, The method of dolng this
i1l be described in the next section.
Angreation and Invorsion

Fram (L.4), we see that if we can express o matrix as a sum
of idempotont components, we can readily imvert it. For, if we talwe

t=~1, we obtoin imnediatolyt

2 4
(501) P pu Pl A' ig (1)3 bl lgoacpn)

That is, to fin: Plo we mltiply each idempotent matrix bty the

reciprocal of ths corresponding characteristic root, and sum over all
such matrices. WJ:, this does not provice us with a useful
computatdtnal procedure, for the matrices, m ©, are difficult to
compute. In the present case, however, we shall see that (5.1) leads us
to a very oonvenient mesthod of inversion that does not reguire, moreover,
the explicit computation of the ﬂ"’o

Using (4.7) and (4.9). we bave immediately:

(5.2) PL¥[n 'g ol 10! (5)° 1‘-“';

The last two %emms of (5.2) are founi by inverting the Ps
and computing the characteristic vectors [(>)] assoaiated with the
rocts at unity. It remains to find the term in equare brackets.

Suppose we have any matrix, A -“au ”, such that:

7 (53)  agym ey Ay (161, 1)

Then it follows that:

Lot b 4 B AR i SRR . -

. e Ldkaenia ¢ |
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(5-4) at) m g (AL) {gor ail @)
v 33w

We prowve this by induction:
o 2) »
(5.5) a 5' 3odg0 lj'/d' ‘IJ' aj/J aJ'J

-&3/., 50 ln| ‘J'J - .J/J ‘g)

Simdlarly, if ‘ﬁ»-l) ~ e s:(mt’:l) wo haves

(5.6) ‘g') " e A ‘g:l) R VARSLE)

Je J(J'
%
= 8y "§J)
In partdodlar, 1t follos that ay3t = ay/y af; s How lot A

be equal to the sum in brackets in (5.2):
ol o ¥
(5.7) Aww 0’52 Agr ™ ®

Then, from (4,11), (413), and (4.66), we know that A satisfies
(503)» henos that: )
1) -
- Py/s "Su

(5.8) o
where, as in (4.13)
(5.9) P '1%1 J!é‘, Py/1 Pay
We now have a practical procedure for investing the mearly-
decomposabls matrix, P,,
(1) Woﬁndthcimusottb?i.
(2) We compute the ;1/1 and farn the aggregative metrix p.4
with elements given by (5.9)

-1
(3) We davert py;, and find a{3) trem (5.8).

(4) Ve now obtain P"'" directly from (5.2)
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The proposed procedurs Yor matrix inversion can be illucirated

by a simple example.

(6.1)

(6.2)

(6.4)

(6.5)

Congider the nesrlys-decomposabls matrix:

9700
P~ -0200
0
~0002
We take as P':
«9700
Piw °m
)
0
We readily fimi:
| 1.031579
P1 -
~00m53
"1 150’.3“78
P2 "
~0LIATE

20295 0005
29800 0
0 +9600
00002 .0396
0300 0
+9800 o
0 <9600
0 «ON00
~.031579
1.021053
-0A3478
1.043478

w.mmpnmmm:

|

-

4%0002 1

~9998 0002
00002 .9998
1.0002 -.0002

0

0
00400
+9600
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and, from (5.8):
(6.6) “aij‘l)“ = 'l 40008 60012 -.0001 -,000%
40008 ,60012  ~,0001  =,0001
~,00008 =,00012  .3001  ,5001

—.me "lez ) 5001 omol

From (6.3) and (6.6), using (5,2), wo obtain ™ -
1,031659 ~.031459 -,0001 ~,0001
6 L -,020973  1.021173  -,0001 50001
.,00008 -,00012 1,043578  ~—,043578
00008  =,00012 ~,043378° 1.043578

The sane mmerical example provides us with an Snsipght into the
dynarical process as expressed in (4.9). From (6,1), ve compute
and P(128)2‘

2390089 . 579037 016631 .Oli2kk
(6.8) P28« |1.392503 586246 L0013 009419

. (128)2
(6.9) P = {l.200782 ,298664 250279 250275

200222 297829 250973  L250076
- ||-20225 ,297833 L250970 ,250973

The charecteristic roots of P are A=l, .9996, .95, .92.

2
Henoe 1128 .1. 09,9 om. O+ o3 x(m) - 1p .m].b. 00, O¢, That
1a to say: FE(Q) (312 (), gy, P12 (1),

A e AN Vot -
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7. Sors Conclvding Commonts

In the preceding sections, we have amalyzed the stiucture of
stable dynard.cal oystams ropresentcd by nearly-dscoapocable matrices.
e have seen that such systems may be viewod 23 composlte systens,
constructed by the superposition of: (1) a mumbor of highly damped
terts, describing the dynamics of separate subsystems wvithin the total
system; and (2) the remaimdng terms, less rapidly darped, descritdng
the dynomics of the intercommections among subeystems,

If such a systen starts from a position of disequilibriua, the
provess of reaching equilibrium may be divided into two phases,
oomapondifg to the decomposition of the dynamlcal system that has
jost been indicated, In the first plmse, each of the subsystess reaches
(or comes very close to) & short-run equilibriva; in the second phase,
the ontire gystem moves toward equilibriuwm, cach of the subsystome
remaining vory ¢lose to its short-rum equilibriun throughout the rocess.
Henoc, in the second phase, the set of variables in each cubsystem
satisfies (approximately) the Lange-iicks condition and can therefore
be aggregated into a single variable,

Hence, the system variables in the case just described can be
nmamtoduntmlmlhimrdv,uiththowuwmw
at the tdgher level, lov, thore is no reason hy we need to restrict
ourselves to 2 two=level hierarchy. For in such a hierarchy, each of
the oubsystam variables at the lower level might be an aggregate of
variables at a still lower level of aggregation. The mtri:of a
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three~level hierarchy, for exanpls, might look comsthine 1ike thias:
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In this matrix, the elencris o1 the suhnetrices designated as
Qs would be of the first order of smallness, and the elements of the
i's and S's of the second order of amallness, At t“ho first level of
aggregation, thers uwill be fowr apgrogative variablss ccrrespording to
the four sulmatrices along the disponal, respectively., At the seeond
level of aggregalion, there will be two agaregative wariables, cITes-
pording to the bloes indicatod Ly broken lines, | B

To invert. a matrixc 1'ke tho on» depicted above, e would first
iavert the motricos Pl, then the two agpregative matricas derived from

, 'l !
; an I : ‘!
!

p ! 3 3 i . resnectively,

|

and finally the second level czgrepative matrix,
In ordinary methods of matrix inversion, the mmber of multiplice.

tions increases as the cube of the 5iza of the .. .rix., In the most
favorable case of a tuwoelevel hicrarciy, using the methods described

hare, ue 41l need to invort matiicos of about size né, and there will

be about né such matrices., Hance, the mmber of multiplicetions vill

£0 up appro:dmately as the squarc of Lie sise of the matrix, Dut if m,

the sizo of the largest natrix to ve inverted at any level of agrregation,
renaling constant as m increases, then the mmber of matyiccs to be inverted

[ -
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will increase proportionately vith m, thelsr alas WAll not imnrense,

and the total mmber of mltipiications 11i1ll increase only propor-
) tionately with n,
E It my be objested that decomposable matrices are rare objects,
mathermtically speaking, and nearly-decomposable metrices almost as much
80, For if the alements of a matrix are selected in any ordimary way by
& random process, the probability that the matriit vill be decomposable
is sero, Dut there is every reason to believe that near-decompreability
is o very common charssteristic of dynsmical systems that exist in the
recl world, Instantaneous, or nearly instantansous, action st & distance
is rere, and sharp boundariss around subsystems relatively common, Ve
have less assurance that this holds for social phenomens than that it
holde for most neturel phencaens, but the frequent ooowrrence of “mearly-
dingomal® metrioss in Lnput-output amlywis angurs well for tils general
approach to aggregation.

The notion that most dynamical systoms that are encountered
expirically consist of hierarchiorn of subsystums ~= the linkage within ‘
the subsystems at cach level bedng stronger tuacn tine linkage bstween sub- ‘
gystems -~ 18 attractive from cnother standpoint. The probaldlity that
a matrix wvith elenents selocltoed independontly and at rondom from a rece
tangular distribution Wil have stalle rootc becomes vamlsiingly emall
as the gise of the mtrix increagos {Ashly), If, however, the matrix
elenionts are selocted in such a way that most matrices are "nearly
diagomal”; stability bocomos an explicable phenomenon, It is probably
o accident that most cowpliax stivolures we cnoomter ere hierarohdal—

or ab least have levels,
I should Yike to cail avicviion to a mmber of discussions in

whe cconorie litoratur upo>n vhich the notion of n-arly-<deommposable
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refersnces 13 far from complote, since I did mot origimelly approadi:
this problem from the stamipoint of agpgregation, anl became awore of
the relation bstireen the two problams only at a relatively late stage
in iy analysis,

1. I have already pointed out that the argument here my be
rozarded as o statemsul of the ciynvmntances wnler vhieh the Lanpe-Hicks
condition ill be satisfici. Tu orn sasily be seon f2om our analysis
that if the mlerc-syste: iu 4yvei wlly stable, this ¢11 also be true
of the aggropated systen, sine: Luc cloracterisiic roots of the aggrega.
tive masrix are also rocts o2 ¢uu orddnal matrix, I hove founl that
this stahility theorem hed bLsen p‘x*-:od earlier in Tamntsu Yokoyzma.

25 Theory of Gmpod.t.o Coowofd’~,” Tgale Jp0n:dis It3.48, Moy, 1952,
Tolmyens 3opups thet the Lange-ioks conditien 1s satdefied, smd
derives tho stablility thacrem from tids assumption,

2, I bave never beun satiefisd that Goodrdn's justification
otmrudwmmﬁm subsystens are wilatorally coupled holds
up if the coupling 4s only "noarly-unilaterel.” On the basis of the
presont analysis, I would suggest that the Justification for partial
aquilibrium analysis or partial dynandics should rest on the property
of "pear-decomposability,”

3. The experiments by :brgenstern and hitdin with aggregation
in sotimting elements of the inverses of Leontief matrioces (reported
in Input-Ontput Analysis: an \oppuisozl) appeer ¢o have yislded results

conziabtant with the thmy ¢ . ¢ | anre,
& Cacueleon Mmolate o L wint apgregation of comaodities c.fm
seek its fustification da 23ti v »7 %o Iduds of prinsiples that, st
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first blush, appear rather antitheticsl to each otiwsr, Cin ths one
band (the lange-fiicks condition), we can aggregste the parts of a
subsystem then these are much more closely linked with esch other than
they are uith the rest of tho system. On the other hand, we can
Wto a set of varisbles if ench of them is linked vith the remainder
of the system in just the same vay as are the others. Our analysin of
near«decomposabdlity shous that the formor sondition is really a special
case of the latter, For if 1 and J are wariables belonging to different
Mor;nulasdaomubhmmtmhuhmml,m
P(t), for sufficiently large t is almost imispendent of 1, That is to
say, the linkage betueen 1 and J is nosligible in the short rum, and
satiofiss the second eondition in the middle run for uhieh it is not
negMigible,

5, Severul persons to uhom I have reported orally this method
of matrix inversion have conjoctured that it may have soms relation to
the method proposed Yy Gebriel Xrom in a mmber of his recent publica=
tions, Since neither I nor the persons ho have nentioned this possindlity
can understand Kron's papers, I am unmahle to ascertain uhether this is
the ense, In any event, he does not appesr to mako explicit une of the
characteristic roots or the idempotent components wpon whish the msthod
developed here depends, nor does he give any indication of the conditions
under which aggregation may be expected to cive a suf “icietly elose
epproximation to the inverse,




